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Abstract
The Helfand–Werthamer (HW) scheme (Helfand and Werthamer 1966 Phys. Rev. 147 288; another part of this work
published as a separate paper by Werthamer et al 1966 Phys. Rev. 147 295) of evaluating the orbital upper critical field is
generalized to anisotropic superconductors in general, and to two-band clean materials, in particular. Our formal procedure
differs from those in the literature; it reproduces not only the isotropic HW limit but also the results of calculations for the
two-band superconducting MgB2 (Miranović et al 2003 J. Phys. Soc. Japan 72 221, Dahm and Schopohl 2003 Phys. Rev.
Lett. 91 017001) along with the existing data on Hc2(T ) and its anisotropy γ (T ) = Hc2,ab(T )/Hc2,c(T ) (a, c are the
principal directions of a uniaxial crystal). Using rotational ellipsoids as model Fermi surfaces we apply the formalism
developed to study γ (T ) for a few different anisotropies of the Fermi surface and of the order parameters. We find that
even for a single band d-wave order parameter γ (T ) decreases on warming; however, relatively weakly. For order
parameters of the form �(kz) = �0(1 + η cos kza) (Xu et al 2011 Nature Phys. 7 198), according to our simulations γ (T )

may either increase or decrease on warming even for a single band depending on the sign of η. Hence, the common belief
that the multi-band Fermi surface is responsible for the temperature variation of γ is proven incorrect.

For two s-wave gaps, γ decreases on warming for all Fermi shapes examined. For two order parameters of the form
�(kz) = �0(1 + η cos kza), presumably relevant for pnictides, we obtain γ (T ) increasing on warming provided both η1 and
η2 are negative, whereas for η > 0, γ (T ) decreases. We study the ratio of the two order parameters at Hc2(T ) and find that
the ratio of the small gap to the large one does not vanish at any temperature, even at Hc2(T ), an indication that this does
not happen at lower fields.

(Some figures may appear in colour only in the online journal)
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1. Introduction

The seminal work of Helfand and Werthamer (HW) [1] on
the temperature dependence of the upper critical field Hc2(T )

is routinely applied to analyze data on new superconductors
despite the fact that HW considered the isotropic s-wave case
whereas in the majority of new materials both Fermi surfaces
and order parameters are strongly anisotropic. The problem of
Hc2(T ) has been studied theoretically for anisotropic situations
as well: for layered systems [5], for a few cases of hexagonal
anisotropy of the Fermi surface and of the order parameter [6],
for the two-band MgB2 [2, 3, 7–9], for d-wave cuprates, see
e.g., [10] and references therein, and in a comprehensive work
in [11], to name a few.

A ubiquitous feature of Hc2 in many new superconductors
is the temperature dependent anisotropy parameter γ =
Hc2,ab/Hc2,c (for uniaxial materials), the property absent
in conventional one-band isotropic s-wave materials. For
example, γ (T ) of MgB2 decreases on warming [12], whereas
for many Fe-based materials γ (T ) increases with increasing
T [13–15]. Up to date, the T dependence of the anisotropy
parameter γ is considered by many to be caused by a multi-
band character of the materials in question with the commonly
given reference to the example of MgB2. To the best of our
knowledge, no explanation was offered for the ‘unusual’ γ (T )

of pnictides.
In this work, we develop a method to evaluate

both Hc2,c(T ) and γ (T ) that can be applied with minor
modifications to various situations of different order parameter
symmetries and Fermi surfaces, two bands included. Having in
mind possible applications for data analysis, we provide only
the necessary minimum of analytic developments resorting to
numerical methods as soon as possible.

The upper critical field is affected by many factors:
magnetic structures that may coexist or interfere with
superconductivity, the paramagnetic limit, scattering, etc. In
this work, we have in mind to establish a qualitative picture
of how the general features of anisotropic Fermi surfaces and
order parameters affect Hc2 and its anisotropy, in particular.

Since the paramagnetic effects and the possibility of
Fulde–Ferrel–Larkin–Ovchinnikov phase are not included in
our scheme (one can find a comprehensive discussion of these
questions in [8]), applications to materials with high Hc2(0)

should be carried out with care; our results can prove useful
for interpretation of data at temperatures where Hc2(T ) does
not exceed the paramagnetic limit.

As far as applications to two-band materials are concerned,
we note that our formalism applies only to superconductors
with a single critical temperature Tc. More exotic possibilities
of two component condensates with two distinct Tcs are out
of the scope of this paper; these are considered on general
group-theoretical symmetry grounds, e.g., in [16, 17].

Fine details of Fermi surfaces are unlikely to strongly
influence Hc2(T ) because, as is well known and shown
explicitly below, only the integrals over the whole Fermi
surface enter equations for Hc2(T ). Circumstantial evidence
for a weak connection between fine particularities of the Fermi
surface and Hc2(T ) is provided by the very fact that the

HW isotropic model works so well for many one-band s-wave
materials, although their Fermi surfaces hardly resemble a
sphere, take for example Nb. Another example is given by
the calculations of [2, 3] for MgB2 based on different model
Fermi surfaces, but giving similar results reasonably close to
the measured Hc2(T ). We, therefore, model actual Fermi
surfaces of uniaxial materials of interest here by rotational
ellipsoids (spheroids) choosing them so as to have averaged
squared Fermi velocities equal to the measured values or to
those calculated for realistic Fermi surfaces. This idea, in
fact, has been employed by Miranovic et al for MgB2 [2].
Also, we tested our method on a rotational hyperboloid as an
example of open Fermi surfaces, appendix D. This work is
still in progress. We intend to study more about effects of
open Fermi surfaces (or two-band combinations of closed and
open surfaces) on Hc2(T ).

We focus in this work on the clean limit for two
major reasons. First, commonly after discovery of a new
superconductor, an effort is made to obtain as clean single
crystals as possible since those provide a better chance to study
the underlying physics. Second, almost as a rule, new materials
are multi-band so that the characterization of scattering leads
to a multitude of scattering parameters which cannot be easily
controlled or separately measured. In addition, in general,
scattering suppresses the anisotropy of Hc2, the central quantity
of interest in this work. We refer readers interested in effects
of scattering to a number of successful dirty-limit microscopic
models, e.g. to [7] and references therein.

In the next section, we begin with the general discussion
of the Hc2 problem for arbitrary Fermi surfaces and order
parameters. We show that in the isotopic limit our approach
is reduced to that of HW. The basic HW approach is then
applied to anisotropic situations. The derivation involves
rescaling of the coordinates and, therefore, necessitates co- and
contravariant vector representations. In our view, disregarding
this necessity may lead to incorrect conclusions. Another
formal feature of our approach should be mentioned: we avoid
the minimization relative to the actual coordinate dependence
of the order parameter in the mixed state often employed to
find Hc2(T ) [2, 3, 9, 10, 18]. In this sense, our method is close
to the original HW work that stresses that Hc2(T ) is actually
an eigenvalue problem.

Next, we formulate the problem for two s-wave bands and
show that along with Hc2(T ) and its anisotropy one can find
the ratio of order parameters on two bands, a quantity that up
to date has been studied only in zero field. We then formulate
the problem for two bands with order parameters of different
symmetries. To show how the method actually works, we
consider in detail one or two bands with Fermi surfaces as
rotational ellipsoids. The method is demonstrated on the well-
studied example of MgB2.

The anisotropy parameter γ is shown to depend on
temperature even for the one-band case for other than s-wave
order parameters. This dependence is weak in the d-wave
materials with closed Fermi surfaces, is stronger for open
Fermi shapes and is stronger yet for order parameters of the
form � = �0(1+η cos kza), one of the candidates for Fe-based
materials [4]. Moreover, γ (T ) increases or decreases on
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warming depending on the sign of the coefficient η, in other
words, on whether � is maximum or minimum at kz = 0.
These results challenge the common belief that temperature
dependence of γ is always related to the multi-band topology
of Fermi surfaces.

For two bands, after checking the method on MgB2, we
focus on situations with dominant inter-band coupling, which
is relevant for Fe-based materials. While in most cases we have
considered, Hc2,c(T ) is qualitatively similar to the HW curve,
the anisotropy parameter γ (T ) may show a non-monotonic T

dependence even for s-wave order parameters depending on
the Fermi surface shapes and densities of states (DOS). Most
interesting are the order parameters � = �0(1 + η cos kza)

which yield nearly linear increase in γ (T ) on warming, a
ubiquitous feature seen in many Fe-based superconductors.

2. The problem of Hc2

Our approach is basically that of HW, although formally the
equations we solve for Hc2(T ) are different and can be applied
to anisotropic and multi-band situations. To establish the
link to HW, we start the discussion with the one-band case.
The problem of the second-order phase transition at Hc2 is
addressed here on the basis of linearized (the order parameter
� → 0) quasiclassic Eilenberger equations [19]. For clean
materials we have

(2ω + v · Π) f = 2�/h̄, (1)

�

2πT
ln

Tc

T
=

∞∑
ω>0

(
�

h̄ω
− 〈� f 〉

)
. (2)

Here, v is the Fermi velocity, Π = ∇ + 2π iA/φ0, A is
the vector potential and φ0 is the flux quantum. �(r, kF) is
the order parameter that in general depends on the position
kF at the Fermi surface (or on v). The function f (r, v, ω)

originates from Gor’kov’s Green’s function integrated over
energy near the Fermi surface. Further, N(0) is the total
DOS at the Fermi level per spin; the Matsubara frequencies
are ω = πT (2n + 1)/h̄ with an integer n. The averages over
the Fermi surface are shown as 〈...〉. The Eilenberger function
g = √

1 − ff + = 1 at Hc2. The temperature T is in energy
units, i.e. kB = 1.

The self-consistency equation (2) is written for the general
case of anisotropic gaps: � = �(r, T ) �(kF). The function
�(kF) which determines the kF dependence of � is normalized
so that

〈�2〉 = 1, (3)

for details see, e.g., [20]. Equation (2) corresponds to the
factorizable coupling potential, V (k, k′) = V0�(k)�(k′).
This popular approximation [21] works well for one band
materials with anisotropic coupling. We show in sections 5
and 6 how this convenient shortcut can be generalized to a
multi-band case.

We now recast the self-consistency equation (2) by writing
the solution of equation (1) in the form

f = 2

h̄

∫ ∞

0
dρ e−ρ(2ω+v·Π)�, (4)

using the identity

1

h̄ω
= 2

h̄

∫ ∞

0
dρ e−2ωρ, (5)

and by summing up over ω:

− � ln t =
∫ ∞

0

du

sinh u
(� − 〈�2e−ρv·Π�〉), (6)

where u = 2πTρ/h̄ and t = T/Tc. Hence, we got rid of the
summation over ω, a convenient feature for further analysis.

The self-consistency equation (6) can be further rewritten
in the form free of the divergent factor 1/ sinh u in the
integrand. To this end, we integrate by parts the right-hand
side (rhs) of equation (6) using du/ sinh u = d ln tanh(u/2).
The first term on the rhs diverges:

∫ ∞

0

du

sinh u
� = −� ln tanh

πTρ

h̄

∣∣∣∣
ρ→0

. (7)

The second term transforms to

−
〈
�2

[
ln tanh

πTρ

h̄
e−ρvΠ

]∞

ρ=0

�

〉

−
〈
�2vΠ

∫ ∞

0
dρ ln tanh

πTρ

h̄
e−ρvΠ�

〉
.

(8)

The first term here and the contribution (7) cancel, and we
obtain instead of equation (6):

� ln t =
∫ ∞

0
dρ ln tanh

πTρ

h̄
〈�2vΠ e−ρv·Π�〉. (9)

Here, the singularity at ρ → 0 is integrable.

2.1. Hc2 near Tc

In this domain, the gradients � ∼ ξ−1 → 0, and one can
expand exp(−ρvΠ) in the integrand (9) and keep only the
linear term:

− �δt = 7ζ(3)h̄2

16π2T 2
c

〈�2(v · Π)2�〉, (10)

where
∫ ∞

0 dx x ln tanh x = −7ζ(3)/16 with ζ(3) = 1.202.
This is, in fact, the anisotropic version of the linearized
Ginzburg–Landau (GL) equation

− ξ 2
ik�i�k� = �, (11)

with

ξ 2
ik = 7ζ(3)h̄2

16π2T 2
c τ

〈�2vivk〉, τ = 1 − t, (12)

the result of Gor’kov and Melik-Barkhudarov [22]. Solving the
eigenvalue problem for equation (11), which is similar to one
for a charged particle in uniform magnetic field, see e.g. work
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by Tilley [23], one finds the critical fields in two principal
directions of uniaxial materials:

Hc2,c = 8πφ0T
2

c τ

7ζ(3)h̄2〈�2v2
a〉

,

Hc2,a = 8πφ0T
2

c τ

7ζ(3)h̄2
√〈�2v2

a〉〈�2v2
c 〉

,

(13)

so that

γ 2(Tc) =
(

Hc2,a

Hc2,c

)2

= ξ 2
aa

ξ 2
cc

= 〈�2v2
a〉

〈�2v2
c 〉

. (14)

The angular dependence

Hc2(θ) = Hc2,a√
sin2 θ + γ 2 cos2 θ

(15)

is a direct consequence of equation (11) in which ξ 2
ik is a second

rank tensor (θ is the angle between the applied field and the
c-axis). We argue below that equation (11) holds at Hc2, in
fact, at all temperatures, and so should the angular dependence
(15), the common practice to call it ‘GL’ notwithstanding.
We show that this angular dependence holds for any order
parameter symmetry and for any Fermi surface shape including
two-band situations. These conclusions are, in fact, confirmed
experimentally [24–30] and by calculations of [2].

3. Isotropic gap on a Fermi sphere

This problem has been solved by HW for the whole curve
Hc2(T ) [1]. It is instructive and useful for the following
generalization to the anisotropic case to reproduce their result
within the quasiclassic scheme [31].

It was established in [1] that at Hc2(T ) at any temperature,
the order parameter satisfies a linear equation

− ξ 2�2� = � (16)

in which ξ(T ) should be determined so as to satisfy the
self-consistency equation. One can see that this equation is
equivalent to the Schrödinger equation for a charge moving in
uniform magnetic field and that the maximum field in which
non-trivial solutions � exist is Hc2 = φ0/2πξ 2. For the field
along z we choose the gauge Ay = Hx. One readily verifies
that in terms of operators

�± = �x ± i�y, �x = ∂x, �y = ∂y + iq2x,

q2 = 2πH/φ0, (17)

Equation (16) reads �+�−� = 0 provided q2 = 1/ξ 2.
Therefore, we obtain a useful property of � at Hc2(T ):

�−� = �−� = 0. (18)

We now introduce v± = vx ± ivy so that vΠ = (v−�+ +
v+�−)/2 and evaluate the average 〈vΠ e−ρvΠ �〉 needed in the
self-consistency equation (9). To this end, we use the known
property of exponential operators:

e−ρvΠ � = eP +Q � = eP eQe[Q,P ]/2 �. (19)

Here, P = −ρv−�+/2, Q = −ρv+�−/2, the commutator
[Q, P ]/2 = −ρ2v2

⊥/4ξ 2 and v2
⊥ = v2

x + v2
y .

Since �−� = 0 and eQ� = �, we have

vΠe−ρvΠ� = e−η

2
(v−�+ + v+�−)

∞∑
n=0

(−ρv−�+)n

2nn!
�,

η = ρ2v2
⊥

4ξ 2
. (20)

After averaging over the Fermi sphere, only 〈v+v−〉 survives
(use v± = v⊥e±iφ):

〈
vΠ e−ρvΠ �

〉 = −ρ

2

〈
e−ηv+v−〉

�−�+�. (21)

Now, with the help of equation (16), the self-consistency
equation (9) yields

ξ 2 ln t = 1

2

∫ ∞

0
dρ ρ ln tanh

πTρ

h̄

〈
e−ηv2

⊥
〉
. (22)

Introducing the dimensionless field

h = h̄2v2
F

4π2T 2
c ξ 2

. (23)

and a variable s = πTcρ/h̄, we rewrite equation (22) for ξ(t)

as an equation for h(t):

ln t = 2h

∫ ∞

0
ds s ln tanh(st)〈µe−µhs2〉, (24)

where µ = v2
⊥/v2

F and vF is the Fermi velocity. The field h

is the upper critical field in units of φ0/(h̄
2v2

F/2πT 2
c ). Thus,

solving equation (24) with respect to h(t) we have the HW
solution of the problem for the isotropic one-band case. In the
following we refer to equation (24) as the HW result although in
the original work they obtained a different form of the equation
for Hc2(T ).

At arbitrary T , equation (24) can be solved numerically;
the exceptions are T → 0 and T → Tc. Since h(0) is finite,
the integral over s is truncated at s ∼ 1/

√
µh; therefore, for

low enough t we have ln tanh(st) ≈ ln t +ln s. The integration
over s then yields

C

2
=

〈
ln

2πTcξ(0)

h̄v⊥

〉
, (25)

where C = 0.577 is the Euler constant. The averaging over
the Fermi sphere with v⊥ = vF sin θ is readily performed:

ξ 2(0) = h̄2v2
F

2π2T 2
c

eC−2. (26)

Thus, we obtain

Hc2(0) = φ0

2πξ 2(0)
= φ0πT 2

c

2h̄2v2
F

e2−C, (27)

the value obtained variationally by Gor’kov [32] and proven
to be exact by HW.
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Close to Tc, Hc2 is obtained as isotropic limits of
equations (13). It is instructive, however, to see how this
can be deduced directly from equation (24). In this domain,
ln t ≈ t − 1 = −τ and h ∝ τ . Then, the integral in
equation (24) should be evaluated in zero order in τ , in other
words, h in exp(−µhs2) can be set zero. Integration over s

gives −(7ζ(3)/16)〈µ〉, whereas 〈µ〉 = 〈v2
⊥/v2

F〉 = 2/3:

h = 12 τ/7ζ(3). (28)

The reduced HW field

h∗(0) = Hc2(0)

|H ′
c2(Tc)|Tc

= h(0)

|h′(1)| = 7ζ(3)e2

48 eC
≈ 0.727, (29)

the correct HW value.

4. Anisotropic one-band case

The central point of the HW paper is the proof that the
linearized GL equation (16) holds not only near Tc but along the
whole curve Hc2(T ). For anisotropic materials equation (16)
should be replaced with equation (11) where all components
of the tensor (ξ 2)ik should be determined from the self-
consistency equation. We consider here uniaxial materials
for which the symmetric tensor ξ 2

ik has two independent
eigenvalues. One has for the field along one of the principal
crystal directions, which we call z:

− (ξ 2
xx�

2
x + ξ 2

yy�
2
y)� = �. (30)

We denote ξxx = ξ/
√

mx , ξyy = ξ/
√

my , ξzz = ξ/
√

mz with
dimensionless constants mx,y,z. Since the three quantities, ξxx ,
ξyy and ξzz, are replaced with four, ξ and mx,y,z, we can impose
an extra condition: mxmymz = 1. For uniaxial materials of
interest here with mc �= ma = mb, we introduce the anisotropy
parameter γ = √

mc/ma , so that all ‘masses’ are expressed
in terms of γ : ma = γ −2/3, mc = γ 4/3. It is worth noting
that ms here do not necessarily have the meaning of the band
theory effective masses; rather, they are parameters describing
the anisotropy of Hc2; near Tc they can be expressed in terms
of Fermi velocities and the gap anisotropy, equation (14)
[22]. Hence, if the ansatz (11) is correct, the self-consistency
equation must provide equations to determine ξ(T ) and γ (T ).

To make use of the property (18) in anisotropic situations
we rescale coordinates in equation (30):

x ′ = x
√

mx, y ′ = y
√

my, (31)

∂2�

∂x ′ 2
+

(
∂

∂y ′ + iq ′ 2x ′
)2

� = − �

ξ 2
, (32)

q ′ 2 = 2πH

φ0
√

mxmy

. (33)

Formally, equation (32) is equivalent to the isotropic
equation (16). The upper critical field is then determined by
q ′ 2 = 1/ξ 2:

Hc2 = φ0
√

mxmy

2πξ 2
. (34)

Therefore, we have in the uniaxial case:

Hc2,c = φ0

2πξ 2
ma, Hc2,b = φ0

2πξ 2

√
mamc (35)

and
Hc2,b

Hc2,c

=
√

mc

ma

= γ. (36)

Thus, the formally introduced ‘masses’ are related to the
measurable ratio of Hc2s.

Any coordinate transformation results in transformation
of vectors (and tensors). The scaling transformation (31)
necessitates the co- and contravariant representations for
vectors, see, e.g., [33] or [34]. The covariant gradients
πx = ∂/∂x ′ and πy = ∂/∂y ′ + iq ′ 2x ′ have the same properties
as their isotropic counterparts �x,y . Equation (32) acquires
the ‘isotropic’ form:

− ξ 2(π2
x + π2

y )� = �, (37)

π−π+� = −2�/ξ 2, π−� = 0. (38)

The following manipulation then is similar to what was carried
out in the isotropic case; one, however, should keep track
of differences between co- and contravariant components of
vectors.

Since the scalar products are invariant, we have vΠ =
νiπi = (ν−π+ + ν+π−)/2, ν± = νx ± iνy where

νx = vx

√
mx, νy = vy

√
my (39)

are the contravariant components of the Fermi velocity that
transform as coordinates, equation (31). Further, we use the
property (19) of exponential operators with

P = −ρ

2
ν−π+, Q = −ρ

2
ν+π−,

1

2
[Q, P ] = −ρ2ν2

⊥
4ξ 2

(40)

and
ν2

⊥ = (νx)2 + (νy)2 = v2
xmx + v2

ymy. (41)

Since π−� = 0 and eQ� = �, we have

vΠe−ρvΠ� = e−η

2
(ν−π+ + ν+π−)

∞∑
n=0

(−ρν−π+)n

2nn!
�,

(42)

where η = ρ2ν2
⊥/4ξ 2.

The next step in the ‘isotropic derivation’ was to use the
fact that 〈v+v−〉 = 2v2

F/3 whereas all other averages (such
as 〈v+v−v−〉) vanish because v± = v⊥e±iφ where φ is the
azimuthal angle on a sphere. To prove rigorously that this
is valid for a general Fermi surface is difficult, although it
is probably true for uniaxial materials of interest here. As
mentioned in the introduction, to make progress in evaluation
of Hc2 and its anisotropy we resort to modeling actual Fermi
surfaces with spheroids. The rescaling employed above, in
fact, transforms spheroids to ‘spheres’ in rescaled coordinates
so that we can still claim that the only surviving product after
averaging of equation (42) is 〈ν+ν−〉 and we obtain

〈�2 vΠ e−ρvΠ �〉 = −ρ

2
〈�2 e−ην+ν−〉π−π+�. (43)

5
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The self-consistency equation (9) now yields with the help of
equation (38):

ξ 2 ln t = 1

2

∫ ∞

0
dρ ρ ln tanh

πTρ

h̄
〈�2e−ην2

⊥〉. (44)

This equation (written for a certain field orientation) contains
two unknown functions, ξ(T ) and γ (T ). Therefore, one has
to write it for two field orientations: (a) for H along c with
η = ρ2ν2

⊥/4ξ 2 and

ν2
⊥ = ma(v

2
x + v2

y) = γ −2/3(v2
x + v2

y), (45)

and (b) for H along b with

ν2
⊥ = mav

2
x + mcv

2
z = γ −2/3(v2

x + γ 2v2
z ). (46)

In principle, by solving the system of these two equations
one can determine both ξ(T ) and γ (T ), thus proving the
correctness of the ansatz (11).

Since the Fermi velocity is not a constant at anisotropic
Fermi surfaces, we normalize velocities on some value v0 for
which we choose

v3
0 = 2E2

F

π2h̄3N(0)
, (47)

where EF is the Fermi energy and N(0) is the total DOS at the
Fermi level per spin. One easily verifies that v0 = vF for the
isotropic case.

We now write the self-consistency equation (44) for
H ‖ c, i.e. with ν⊥ of equation (45), in dimensionless form. To
this end, we go to the integration variable s = πTc/h̄, divide
both parts by ξ 2, and multiply and divide the integrand by v2

0:

ln t = 2hc

∫ ∞

0
s ln tanh(st) 〈�2µce−µchcs

2〉ds, (48)

hc = h̄2v2
0γ

−2/3

4π2T 2
c ξ 2

, µc = v2
x + v2

y

v2
0

. (49)

One can see that hc is in fact Hc2,c in units of φ0/(h̄
2v2

0/2πT 2
c ).

An important feature of equation (48) should be noted: it does
not contain the anisotropy γ explicitly so that it can be solved
for hc(t).

Writing equation (44) for H ⊥ c with ν⊥ of equation (46)
we obtain

ln t = 2hc

∫ ∞

0
s ln tanh(st)〈�2µbe−µbhcs

2〉ds, (50)

µb = v2
x + γ 2v2

z

v2
0

. (51)

For the isotropic s-wave case, γ = � = 1 and equations (48)
and (50) coincide with each other and with equation (24) of
HW. We note that the integrals on the rhs of equations (48),
(50) differ only in µs; for brevity we denote

I =
∫ ∞

0
s ln tanh(st)〈�2µe−µhcs

2〉ds. (52)

Thus, the general scheme for solving for Hc2(T ) and its
anisotropy consists of (a) solving equation (48) for hc(t) and
(b) for the now known hc(t), solving equation (50) for γ (t).

4.1. T → Tc and T → 0

Analysis of equations (48) and (50) for arbitrary temperatures
is difficult because hc(t) and t enter the integrals I in a
nonlinear fashion. The situation is simpler near Tc where
ln t ≈ −τ = t−1 and hc ∝ τ . Therefore, I can be evaluated in
zero order in τ , in other words, hc in the exp(−µ2

chcx
2) can be

set zero and t = 1 in ln tanh(xt). We obtain after integration:

I = −7ζ(3)

16
〈�2µ〉, (53)

where for H ‖ c one takes µ = µc whereas µ = µb for
H ⊥ c. Equation (48) now yields

hc = 8τ

7ζ(3)〈�2µc〉 , h′
c(1) = − 8

7ζ(3)〈�2µc〉 . (54)

It is readily shown that equation (50) for γ (Tc) reduces to

〈�2µb〉 = 〈�2µc〉. (55)

Using µb and µc of equations (51) and (49) one reproduces the
general result (14).

As t → 0, hc → const, and the exponential factor in I
truncates the integrand at a finite x ∼ 1/

√
µhc. Hence, at

small enough t , ln tanh(xt) ≈ ln(xt) = ln t + ln x. One can
now integrate over x:

I(µ) = ln t

2hc

− C + 〈�2 ln(hcµ)〉
4hc

. (56)

Substituting this in equation (48) one obtains

hc(0) = exp(−C − 〈�2 ln µc〉). (57)

The HW ratio for a general anisotropy reads

h∗
c (0) = hc(0)

h′
c(1)

= 7ζ(3)

8eC

〈
�2µc

〉
exp

(−〈
�2 ln µc

〉)
. (58)

Thus, the HW number h∗(0) = 0.727 is corrected by both
Fermi surface shape and by the order parameter symmetry.

Equation (50) for γ (0) along with the expression for hc(0)

readily gives at T = 0

〈�2 ln µc〉 = 〈�2 ln µb〉. (59)

5. Two s-wave bands

The general self-consistency equation for two bands reads

�α(r, k) = 2πT
∑
β,ω

Nβ〈Vαβ(k, k′)fβ(r, k′, ω)〉k′ . (60)

Here, α, β = 1, 2 are band indices and Nβ are the bands
DOS. We consider elements of Vαβ as constants, so that our
model is a weak-coupling two-band theory in which the s-wave
(i.e. k independent) order parameters �1,2(r, T , H) should be
calculated self-consistently for a given coupling matrix Vαβ .

As is commonly done, it is convenient to rewrite
this equation in the form containing the measured critical
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temperature which is related to the effective coupling V0 via
the standard BCS formula

�(0) = πe−CTc = 2h̄ωDe−1/N(0)V0 , (61)

where h̄ωD is the energy scale of a ‘glue boson’. To this end,
we introduce the normalized coupling matrix λαβ = Vαβ/V0

and use the relation identical to equation (61) for Tc:

1

N(0)V0
= ln

T

Tc
+ 2πT

ωD∑
ω>0

1

h̄ω
. (62)

We then obtain

− �α ln t = 2πT
∑

ω


�α

h̄ω
−

∑
β

nβλαβ〈fβ〉

 (63)

with nβ = Nβ/N(0).
Solving the self-consistency equation in zero field and

� → 0 one obtains a relation for Tc (or for V0) in terms of
couplings Vαβ and DOS nα (appendix B):

V −2
0 n1n2d − V −1

0 (n1V11 + n2V22) + 1 = 0, (64)

d = V11V22 − V 2
12, (65)

Therefore, the normalized λαβ = Vαβ/V0 obey

n1n2δ − n1λ11 − n2λ22 + 1 = 0, (66)

δ = λ11λ22 − λ2
12. (67)

This property, in fact, means that normalized couplings λαβ for
a given Tc have only two independent components, which are
chosen in the following as λ11 and λ22.

To avoid misunderstanding, we stress that our notation
for the normalized λαβ = Vαβ/V0 differs from λlit

αβ used in
the literature: the latter are λlit

11 = N1V11, λlit
22 = N2V22 and

λlit
12 = N1V12. It should also be noted that equation (63) is

not valid for the unlikely situation of zero inter-band coupling,
V12 = 0, because two decoupled condensates in general have
two different critical temperatures.

As was done in section 2, we can transform the self-
consistency equation (63) to

�α ln t =
∑

β

nβλαβ

∫ ∞

0
dρ ln tanh

πTρ

h̄
〈v · Πe−ρvΠ∆〉β,

(68)

the averaging in the last term here is only over β-band.
We have generalized the HW isotropic one-band approach

by showing that linearized GL equation −(ξ 2)ik�i�k� = �

holds everywhere along the Hc2 line. Clearly, the tensor (ξ 2)ik
gives the length scales of spatial variations of � at Hc2. Before
solving the self-consistency equation for two-band systems
(68) it is instructive to recall the situation in the GL domain
of a two-band material, which has recently been discussed in
some detail for the case of two isotropic bands [35–37].

The system of two GL equations for two order parameters
written in terms of coefficients of the GL energy expansion
looks–at first sight—as if it contains two different coherence

lengths, i.e. each order parameter varies in space with its own
length scale different from the other. It has been shown,
however, that at T = Tc these two length scales coincide,
provided of course that the system has a single Tc [35]. In fact,
two GL equations can be written as one with a single coherence
length ξ which is related in a non-trival manner to coefficients
of the GL energy functional. Thus, for a material with two
isotropic bands, the linearized GL equation is the same for
both bands:

− ξ 2�2�α = �α, α = 1, 2. (69)

When the two bands are anisotropic, we can look for
solutions of the self-consistency system (68) which satisfies
at Hc2 the linear equation

− (ξ 2)ik�i�k�α = �α, α = 1, 2. (70)

All components of the tensor (ξ 2)ik are to be determined from
the self-consistency equations. One can consider equation (70)
as an ansatz which should be substituted in the self-consistency
relations. If one succeeds in finding such a (ξ 2)ik so that the
latter are satisfied, the ansatz (70) is proven correct.

Repeating the derivation of section 4 we obtain

〈v · Πe−ρv·Π�〉β = ρ�β

2ξ 2
〈ν2

⊥e−η〉β, (71)

where ξ is the average coherence length related to the
eigenvalues of ξ 2

ik: ξ 2
aa = ξ 2γ 2/3 and ξ 2

cc = ξ 2γ −4/3. Further,
η = ρ2ν2

⊥/4ξ 2 and ν⊥ is given in equation (45) for H ‖ c and
in equation (46) for H ⊥ c. Substituting this in system (68)
we obtain after straightforward algebra:

a11�1 + a12�2 = 0,

a21�1 + a22�2 = 0,
(72)

with

a11 = ξ 2 ln t − λ11J1, a12 = −λ12J2,

a21 = −λ21J1, a22 = ξ 2 ln t − λ22J2, (73)

Jα = nα

2

∫ ∞

0
dρ ρ ln tanh

πTρ

h̄
〈ν2

⊥e−η〉α. (74)

Zero determinant of the linear system (72) gives ξ(t):

ξ 4(ln t)2 − ξ 2 ln t (λ11J1 + λ22J2) + δJ1J2 = 0. (75)

For a single band n2 = 0 and λ11 = 1 and one obtains
equation (44).

The order parameters �1,2 at Hc2, as solutions of system
(72), are determined only within an arbitrary factor, whereas
their ratio is fixed: �1/�2 = −a12/a11. This means that �1

and �2 at Hc2 have the same coordinate dependences and,
in particular, that they have coinciding zeros (this, of course,
follows already from equation (70)). The gaps ratio is, in
general, temperature dependent (for brevity, we use the term
‘gap’ instead of ‘order parameter’ although the latter is more
accurate).

7



Rep. Prog. Phys. 75 (2012) 114502 V G Kogan and R Prozorov

Introducing a dimensionless field hc according to
equation (49) one rewrites equation (75) as an equation
for hc(t):

(ln t)2 − 2hc(n1λ11I1 + n2λ22I2) ln t

+4h2
c(n1λ11 + n2λ22 − 1)I1I2 = 0, (76)

Iα =
∫ ∞

0
ds s ln tanh(st)〈µce−µcs

2hc〉α, (77)

where µc is given by equation (49) for the corresponding
band, and we took account of equations (66) and (67). As
in the one-band case, this equation does not contain the
anisotropy parameter γ and can be solved numerically for
hc(t). Equations of a structure similar to (76) have been
employed in studies of Hc2 in two-band superconductors [8, 9].

Given hc(t), one finds the upper critical field:

Hc2,c = 2πT 2
c φ0

h̄2v2
0

hc(t), (78)

where v0 is expressed in terms of the Fermi energy and the
total DOS in equation (47).

Writing the self-consistency condition for H ⊥ c, we
obtain equation (76) in which, however, hc(t) is now known
and µc,α in integrals (77) is replaced with µb,α(γ ) given by
equation (51) for each band. Solving this numerically, one
obtains γ (t).

The case of T → Tc is treated as was done for a one-band
situation:

Iα|Tc = −7ζ(3)

16
〈µ〉α (79)

(take equation (53), set � = 1 for the s-wave and add the band
index). For H ‖ c one takes µ = µc whereas µ = µb for
H ⊥ c. The same argument which led to equation (56) gives
for two bands at low temperatures:

Iα(µ)|t→0 = ln t

2hc

− C + 〈ln(hcµ)〉α
4hc

. (80)

One can make progress analytically in looking for Hc2

near Tc and for T → 0. This calculation is useful for checking
the numerical routine; for the sake of brevity we do not provide
these somewhat cumbersome results.

5.1. Ratio �2/�1 at Hc2

It follows from system (72):

�1

�2
= −a22

a21
= ln t − 2n2λ22hcI2

2n1λ12hcI1
, (81)

where

λ12 =
√

n1n2λ11λ22 − n1λ11 − n2λ22 + 1

n1n2
. (82)

We stress again that the coordinate independent ratio
�2(r)/�1(r) makes sense only for order parameters having
the same coordinate dependence (in particular, the same zeros
and the same phases).

As T → 0, one can keep only the leading logarithmic
term in Iα of equation (80) to obtain1

�1

�2

∣∣∣∣
T =0

= 1 − n2λ22

n2λ12
. (83)

We point out that the zero-T gap ratio does not depend either
on the Fermi surfaces involved or on the value of Hc2(0). Also,
this ratio at t = 0 is the same for both field orientations; this
is not the case for t �= 0.

6. Two bands with gaps of different symmetries

Other than s-wave order parameters emerge if the coupling
V (k, k′) responsible for superconductivity is not a constant
(or a 2×2 matrix of k independent constants). The
formally simplest way to consider different from s-wave order
parameters without going to details of microscopic interactions
is to use a ‘separable’ potential:

Vαβ(k, k′) = V
(0)
αβ �α(k)�β(k′), (84)

where V
(0)
αβ is a k independent matrix, and look for the order

parameters in the form

�α(r, T , k) = �α(r, T )�α(k) (85)

with the normalization 〈�2〉α = 1 for each band. One can see
that this leads to the self-consistency equation

−�α ln t = 2πT
∑

ω


�α

h̄ω
−

∑
β

nβλαβ〈�βfβ〉β

 , (86)

where
λαβ = V

(0)
αβ /V0, (87)

see also appendix B. The same algebra as in section 5 results
in equation (76) for hc(t) with

Iα =
∫ ∞

0
ds s ln tanh(st)〈�2µce−µchcs

2〉α. (88)

As before, one calculates the anisotropy γ (t) replacing µc with
µb(γ ).

7. Ellipsoid of rotation

The Fermi surface as an ellipsoid of rotation is an interesting
example in its own right and as a model system for calculating
Hc2 in uniaxial materials with closed Fermi surfaces. Since
Hc2 is weakly sensitive to fine details of Fermi surfaces,
calculations performed for ellipsoids might be relevant for
realistic shapes as well.

Similarly, open Fermi surfaces (extending to boundaries
of the Brillouin zone) in uniaxial materials can be studied
qualitatively by considering rotational hyperboloids. The

1 It is instructive to note that the zero-T value of the ratio of coordinate
dependent order parameters at the upper critical field Hc2(T = 0) is the same
as at zero field and T = Tc [35, 38].
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formal treatment of these shapes is similar to that of ellipsoids.
This work is still in progress, we show some of it in appendix D.

Consider an uniaxial superconductor with the electronic
spectrum

E(k) = h̄2

(
k2
x + k2

y

2mab

+
k2
z

2mc

)
, (89)

so that the Fermi surface is an ellipsoid of rotation with z being
the symmetry axis.

In spherical coordinates (k, θ, φ) we have

E(k) = h̄2k2

2mab

(
sin2 θ +

mab

mc

cos2 θ

)
= h̄2k2

2mab

�(θ), (90)

so that

k2
F(θ) = 2mabEF

h̄2�(θ)
. (91)

The Fermi velocity is v(k) = ∇kE(k), with the derivatives
taken at k = kF:

vx = vab sin θ cos φ√
�(θ)

, vy = vab sin θ sin φ√
�(θ)

,

vz = ε
vab cos θ√

�(θ)
, ε = mab

mc

, vab =
√

2EF

mab

.

(92)

The value of the Fermi velocity, v = (v2
x + v2

y + v2
z )

1/2, is
given by

v = vab

√
sin2 θ + ε2 cos2 θ

sin2 θ + ε cos2 θ
= vab

√
�1(θ)

�(θ)
. (93)

The DOS N(0) is defined as an integral over the Fermi
surface:

N(0) =
∫

h̄2d2kF

(2πh̄)3v
. (94)

The integral over the Fermi surface can be done by integrating
over the solid angle d� = sin θ dθ dφ:

N(0) = m2
abvab

2π2h̄3

∫
d�

4π
√

�(θ)�1(θ)
. (95)

The Fermi surface average of a function A(θ, φ) is

〈A(θ, φ)〉 = 1

D

∫
d� A(θ, φ)

4π
√

�(θ)�1(θ)
, (96)

D =
∫

d�

4π
√

�(θ, ε)�1(θ, ε)
= F(cos−1 √

ε, 1 − ε)√
1 − ε

,

(97)

where F is an incomplete elliptic integral of the first kind. If
the function A depends only on the polar angle θ , one can
employ the variable u = cos θ :

〈A(θ)〉 = 1

D(ε)

∫ 1

0

du A(u)√
�(u, ε)�1(u, ε)

, (98)

� = 1 + (ε − 1)u2, �1 = 1 + (ε2 − 1)u2. (99)

It is useful for the following to have a relation between vab and
v0 of equation (47) for a one-band situation:

v3
ab = D(ε) v3

0 . (100)
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0.0 0.2 0.4 0.6 0.8 1.0
0.0
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0.6

ε = 5

ε = 1

ε = 0.2

h
c

 

ε = 1

ε = 0.2 and 5

h
* c

t = T/T
c

H || c

Figure 1. The upper panel: reduced upper critical fields for a prolate
ε = 0.2 and oblate ε = 5 spheroids and s-wave order parameter.
hc(t) is calculated solving equations (48), (49), (52). The HW result
for ε = 1 is shown for comparison. The lower panel: the same result
plotted using the HW normalization (102) to show that in this
representation hc only weakly depends on the Fermi surface shape.

7.1. H ‖ c

One obtains µc using equations (47), (49) and (92):

µc = D2/3(ε)
sin2 θ

�(θ, ε)
. (101)

Hence, we can solve equation (48) for hc(t) for a spheroid with
a fixed mab/mc = ε.

Examples of this calculation for the s-wave order
parameter, � = 1, are shown in the upper panel of figure 1
for a prolate ellipsoid with ε = 0.2 and for an oblate one
with ε = 5 (the latter corresponds to the ratio of spheroid
semi-axes

√
5); equations (76) and (77) for hc are solved

numerically by employing any of the available packages, such
as Mathematica, able to find roots of nonlinear equations and
do multiple integrals. The plotted hc(t) is Hc2,c normalized
on φ0/(h̄

2v2
0/2πT 2

c ) with v0 given in equation (47) in terms
of the Fermi energy and the total DOS. For comparison, the
same results are shown in the lower panel of figure 1 in the
traditional HW normalization

h∗
c = Hc2,c(T )

TcH
′
c2,c(Tc)

= hc(t)

h′
c(1)

. (102)

It is seen, therefore, that for one-band s-wave materials,
although the actual values of hc(0) vary, the curves of Hc2,c(T )

have qualitatively similar shapes for different Fermi surfaces.
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γ
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 ε = 1

d-wave

s-wave

Figure 2. Anisotropy parameter γ = hab/hc = Hc2,ab/Hc2,c

calculated solving equations (50), (51) and (77) for s- and d-wave
order parameters.

7.2. γ (t)

To solve equation (50) for H ‖ a, we need

µb = v2
x + γ 2v2

z

v2
0

= D2/3(ε)
sin2 θ cos2 ϕ + γ 2ε2 cos2 θ

�(θ, ε)
. (103)

The anisotropy parameter γ is calculated with the help
of equations (50) and (51) and shown in figure 2. It is worth
observing that for the s-wave case, γ depends on the Fermi
surface shape but is temperature independent.

One can see that γ = 1 for a Fermi sphere with ε = 1,
as it should. One can show that γ (ε) behave approximately
as 1/

√
ε. In particular, we observe that for oblate Fermi

spheroids, γ < 1, i.e. Hc2,ab < Hc2,c.

7.3. d-wave on a one-band ellipsoid

For this case � = �0 cos 2ϕ and one can verify that the
condition 〈�2〉 = 1 yields �2

0 = 2, the same value for any
Fermi spheroid. Equation (48) then can be solved numerically
with the results shown in figure 3 for values of ε given in the
caption. The anisotropy parameter for d-wave is shown in
figure 2; unlike s-wave, it decreases on warming.

It is worth observing that, for a fixed ε, hc(t) for
s- and d-wave order parameters are the same. This is
because the Fermi surface average in equation (48) involves
(1/2)

∫ π

0 sin θdθ for the s-wave whereas for the d-wave we

have (1/4π)
∫ π

0 sin θdθ
∫ 2π

0 2 cos2 2φ dφ, which has the same
value as for the s-case.

7.4. Order parameter modulated along kz

The gap function suggested by the ARPES data for
Ba0.6K0.4Fe2As2 has a general form [4]

� = �0(1 + η cos kza). (104)
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0.0
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ε = 0.2d-wave

H || ab

h

H || c

s-wave

 

ε = 5

d-wave

H || ab
h

t

H || c

s-wave

Figure 3. Reduced fields h(t) for two spheroids, ε = 0.2, 5. For
H ‖ c, s- and d-curves coincide, as explained in the text.

This order parameter varies along the Fermi surface with
changing kz; it does not have zeros if |η| < 1. Depending on the
sign of η, it has maximum or minimum at the ‘equator’ kz = 0.

To apply this dependence for Fermi spheroids, we write

k2
z = k2

F cos2 θ = 2mabEF cos2 θ

h̄2�(ε, θ)
, (105)

where kF is taken from equation (91). Since mab = 2EF/v
2
ab

and vab = v0D
1/3, we obtain

kza = 2EFa cos θ

h̄v0D1/3(ε)
√

�(ε, θ)
. (106)

We now choose the length scale

a = h̄v0

2EF
, (107)

so that

kza = cos θ

D1/3(ε)
√

�(ε, θ)
. (108)

Note that in the isotropic case, the length a = a0/(3π2)1/3

with a0 being the interparticle spacing (the unit cell size).
To adopt the order parameter (104) for our formalism we

define

�2 = (1 + η cos(kza))2

〈(1 + η cos(kza))2〉 , (109)

as to satisfy the normalization 〈�2〉 = 1 (the average in the
denominator is calculated according to equation (D10)).
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Figure 4. The reduced field hc(t) is shown in the upper panel for a
spheroid with ε = 0.1 and the order parameter (104) with a = 1 and
η = ±0.5. The two lower panels show the anisotropy parameter
γ (t).

Numerical evaluation of hc(t) for parameters given in the
caption of figure 4 results in a curve qualitatively similar to that
of HW (the upper panel); however, the anisotropy parameter
decreases on warming for η > 0 as shown in the middle panel.
It is quite remarkable that changing the sign of η, i.e. going
from order parameters with a maximum at the Fermi surface
‘equator’ kz = 0 (η > 0) to ones with a minimum (η < 0), not
only changes the temperature dependence of γ to the opposite
but also affects its absolute values as well (for positive η, the
anisotropy parameter is noticeably larger than for η < 0 for
other parameters kept the same).

One can readily evaluate how the anisotropy of the London
penetration depth �, γ� = �c/�ab, changes with temperature
for η = −0.5 (for which the Hc2 anisotropy is shown in the
lowest panel of figure 4). To this end we note that the GL theory
requires the same values of these two anisotropies at Tc, so that
γ�(Tc) = γ (Tc) ≈ 2.17 according to figure 4. As T → 0,
γ 2

�(0) → 〈v2
x〉/〈v2

z 〉 (in the clean limit, the order parameter
does not enter the anisotropy of the London depth) [20, 38,
39]. The calculation of these averages is straightforward
for a spheroid with ε = 0.1: γ�(0) ≈ 3.38. Thus, the
�-anisotropy decreases on warming, unlike Hc2-anisotropy.
This qualitative behavior of the �-anisotropy is, in fact, seen
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Figure 5. The anisotropy parameter γ (t) for three different Fermi
surfaces ε = 0.1, 1, 5 and the order parameter of the form (104)
with η = −0.5.

in experiments on Ba(Fe1−xCox)2As2, (Ba1−xKx)Fe2As2 and
NdFeAs(O1−xFx) [40].

In figure 5 we demonstrate that the effect of γ increasing
on warming remains if the Fermi surface changes from a prolate
spheroid with ε = 0.1 to a sphere ε = 1 and to oblate spheroid
with ε = 5. In particular, these features challenge the common
belief that temperature dependence of the anisotropy parameter
is always related to a multi-band situations.

We note in concluding this section that other possible
anisotropic order parameters can be treated within our scheme
in a similar manner.

8. Two-band results

To apply the theory developed for two-band materials one
first should map actual band structure upon two spheroids, the
procedure we demonstrate in some detail on the well-studied
MgB2. When calculating parameters µc (and µb) needed in
this mapping for each band, one should bear in mind that in
the two-band situation we have

µc,α =
[
D(εα)

nα

]2/3 sin2 θ

�(θ, εα)
, (110)

see appendix C.

8.1. MgB2

We take this example to demonstrate that our procedure yields
Hc2,c(T ) and the anisotropy γ (T ) in agreement with existing
data (see, e.g., [12, 41]) and with calculations of [2, 3, 9]. We
stress that our calculations of Hc2 are done with the same set of
coupling parameters as those used for the zero-field properties
of this material as described in [38]. The four Fermi sheets
of MgB2 can be grouped into two effective bands with nearly
constant zero-field gaps for each group [42]. The two effective
bands are mapped here upon two ellipsoids [2]. We describe
this procedure in some detail.
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We take the following data from the band structure
calculations [44]: the relative DOS of our model are n1 ≈ 0.42
and n2 ≈ 0.58 for σ and π bands, respectively [42, 43]. The
band calculations [43] also provide the averages over separate
Fermi sheets: 〈v2

a〉1 = 23, 〈v2
c 〉1 = 0.5 and 〈v2

a〉2 = 33.2,
〈v2

c 〉2 = 42.2 × 1014 cm2 s−2.
To map this system onto two Fermi ellipsoids, we note

that the averages over spheroids are given by

〈v2
x〉 = v2

ab

2D(ε)

∫ 1

0

du(1 − u2)

�3/2(ε)�
1/2
1 (ε)

, (111)

〈v2
z 〉 = v2

abε
2

D(ε)

∫ 1

0

du u2

�3/2(ε)�
1/2
1 (ε)

, (112)

where u = cos θ . The integrals here can be expressed in
terms of elliptic integrals, alternatively they can be evaluated
numerically. Forming the ratio 〈v2

x〉/〈v2
z 〉 we obtain an

equation which can be solved for ε. This gives ε1 = 0.028 67
and ε2 = 1.273. For a given ε and, e.g., 〈v2

z 〉 ≡ 〈v2
c 〉, we

obtain v2
ab for two ellipsoids: v2

ab,1 = 0.6019 × 1014 and
v2

ab,2 = 1.436 × 1016 (cm s−1)2. Next, we write

1

v3
0

= π2h̄3(N1 + N2)

2E2
F

= 1

v3
01

+
1

v3
02

= D(ε1)

v3
ab,1

+
D(ε2)

v3
ab,2

, (113)

where equation (100) has been used; this gives v2
0 = 3.867 ×

1014 (cm s−1)2, the constant used in the field normalization.
To obtain normalized coupling constants λαβ = Vαβ/V0

we use the effective values (calculated including Coulomb
repulsion), which in our notation read: N1V11 = 0.807,
N2V22 = 0.276, N1V21 = 0.118, N2V12 = 0.086 [44]. Using
equation (64) one evaluates 1/V0N(0) = 1.211, and obtains
the normalized coupling

λ11 = V11

V0
= N1V11

N(0)V0

1

n1
≈ 2.328. (114)

Similarly, we find λ22 = 0.5765, λ12 = λ21 = 0.340. With
these input parameters we have solved equations (76) and (77)
for hc(t). The result is shown in the upper panel of figure 6.

Given hc(t), we rewrite the same equations where µc is
replaced with µb(γ ) and solve them for γ (t). The latter is
shown in the lower panel of figure 6.

Hence, the calculation gives hc(0) ≈ 0.292. We now use
relation (78) between the dimensionless hc and physical Hc2,c,
where Tc = 39.5 K and v0 has been estimated above, to obtain
Hc2,c(0) ≈ 2.8 T, the value close to the observed [12, 41].
The general behavior of Hc2,c(T ) is close to that of HW, the
fact confirmed by experiment. It should be mentioned that
our result is close to the calculations of Miranovic et al [2],
Dahm and Schopohl [3] and Palistrant [9]. We, however, do
not reproduce the calculated Hc2,c(T ) with changing curvature
and a substantial upturn at low T s of [8].

The general formula for the gaps ratio at Hc2 is given
in equation (81). Figure 7 shows this ratio as a function of
temperature at Hc2,c. For comparison we show the gap ratio
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Figure 6. Upper panel: reduced upper critical fields of clean MgB2.
hc(t) is calculated solving equations (76) and (77) for two spheroids
with ellipticity parameters ε1 = 0.028 67 (a strongly prolate
spheroid for nearly 2D σ band) and ε2 = 1.273 (for a 3D π band)
evaluated with the help of two-band Fermi velocities from the band
structure calculations of [43]. The reduced couplings λαβ are
evaluated on the basis of microscopic calculations of [44] as
described in the text. Middle panel: the same for the fields in
common units; Hc2,c(0) ≈ 2.8 T and Hc2,ab(0) ≈ 16 T. Lower panel:
the anisotropy parameter γ = hab/hc = Hc2,ab/Hc2,c calculated
solving equations (76), (77) with µc replaced by µb(γ ).
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Figure 7. The ratio �1/�2 of two order parameters of MgB2 at
Hc2,c and at zero field calculated with the same coupling constants.
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in zero field calculated with the help of the same coupling
constants [38]. It is instructive to note that the gap ratio at
Hc2 exceeds the zero-field value at all temperatures, which
can be interpreted as a stronger suppression of the small gap
by the magnetic field than that of the large one at the leading
σ band. At first sight, one would expect the two ratios to
coincide as T → Tc, which our results clearly do not show.
Such an expectation, however, would not be justified: even
when Hc2 → 0, the superconductor in the mixed state differs
from the uniform state by an extra magnetic field suppression
of the order parameter.

One often finds in the literature the statement that a small
gap in MgB2 is substantially or even completely suppressed by
a large enough field. This would correspond to a substantial
increase in �1/�2 or even divergence of this ratio at some field
under Hc2. Our result, however, shows that even at Hc2 the gap
ratio is finite and of the same order at all T s. We conclude that
full suppression of the small gap does not happen at any field
H � Hc2. On the other hand, assuming (as was done in [2])
that the gap ratio at Hc2 is the same as that calculated in zero
field, is also incorrect.

8.2. λ11 ∼ λ22 � |λ12|
This case is close to theoretical models of pnictides in which the
inter-band coupling is assumed dominant. We consider here
a limiting situation λ11 = λ22 = 0 to simplify the algebra.
Indeed, for the two field directions we have

(ln t)2 − 4h2
c I1(µc) I2(µc) = 0, (115)

(ln t)2 − 4h2
c I1(µb) I2(µb) = 0. (116)

The first equation here can be solved for hc(t). Since µb

depends on γ , the second gives an equation for γ (t). The
latter can also be written in a different form if one subtracts
equation (115) from (116):

I1(µc) I2(µc) = I1(µb) I2(µb). (117)

Figure 8 shows the numerical solution for γ (t) for a
few representative parameter sets. It is worth noting the
particularly informative feature of figure 8: it shows that the
anisotropy γ (t) is not necessarily a monotonic function of
temperature. We note that numerical calculations of γ (t)

showing an extremum at 0 < t < 1 are quite robust.

8.2.1. �1/�2. The general result for the gap ratio (81) gives
for λ11 = λ22 = 0:

�1

�2
= ln t

2n1λ12hcI1
. (118)

Near Tc we use Is of equation (53) and hc from
equation (115) to obtain

�1

�2

∣∣∣∣
Tc

= 1

n1λ12

√
〈�2µc〉2

〈�2µc〉1
=

√
n2〈�2µc〉2

n1〈�2µc〉1
, (119)
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Figure 8. The anisotropy parameter γ (t) for the order parameter of
the form � = �0(1 + η cos kza) . The parameters chosen are:
ε1 = ε2 = 0.1, n1 = 0.5, a = 1, for three sets of ηs given in the
figure.

since for λ11 = λ22 = 0, the normalized λ2
12 = 1/n1n2. As

T → 0, we can keep only the leading term ∼ ln t in I of
equation (56):

�1

�2

∣∣∣∣
T =0

=
√

n2

n1
. (120)

It is instructive to note that the last relation in the form
n1�

2
1 = n2�

2
2 at T = 0 suggests the equipartition of

condensation energy between the bands (provided the only
non-zero coupling is λ12).

8.2.2. Two bands with �(kz). This example is of interest
because it may have implications for understanding the
behavior of Hc2(T ) and, in particular, its anisotropy in
Fe-based materials. In figure 9 we show hc(t) and γ (t) for
two nearly cylindrical bands with order parameters modulated
along kz according to equation (104). Modulations are
characterized by η1 = η2 = −0.2; other parameters are given
in the caption. The main feature worth paying attention to
is the anisotropy γ (t), which is increasing on warming for
negative ηs.

It is worth noting that experimental anisotropy of Fe-based
materials behaves qualitatively similar to that shown by the
lowest curve in the lower panel of figure 9 [13]. We,
however, do not have enough information to fix the necessary
parameters for realistic calculations (one needs partial DOS,
Fermi surfaces characterized separately for relevant bands
for evaluating the geometric parameters ε, and the order
parameters �(kF)). Hence, we take our results as having a
generic qualitative value.

9. Summary and conclusions

The upper critical field Hc2 and its anisotropy are among the
easiest properties to examine when a new superconductor is
discovered. This work provides a relatively straightforward
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parameter γ (t) (lower panel) for the order parameter of the form
� = �0(1 + η cos kza) . The parameters chosen are ε1 = ε2 = 0.1,
n1 = 0.5, a = 1, for three sets of ηs given in the figure.

scheme for evaluating the orbital Hc2(T ) and its anisotropy
γ (T ) for single and two-band uniaxial materials. We
reproduce here the main points of our approach.

The input parameters for two-band materials are (i) the
coupling matrix Vαβ (or the normalized couplings λαβ and Tc),
(ii) the symmetries of the order parameter on two bands given
as �β(θ, φ), β is the band index, with the normalization (3)
and (iii) the characteristics of electron systems (Fermi surfaces,
averages of squared Fermi velocities, DOS).

The equation to solve for the reduced upper critical field
hc(t) parallel to the c crystal axis of a two-band clean uniaxial
material reads

(ln t)2 − 2hc(n1λ11I1 + n2λ22I2) ln t

+4h2
c(n1λ11 + n2λ22 − 1)I1I2 = 0,

Iβ =
∫ ∞

0
ds s ln tanh(st)〈�2µce−µcs

2hc〉β, (121)

where µc is given by equation (49) for the corresponding band,
and �s describe the order parameter symmetries. After hc(t)

is found, one solves equation (121), in which µc is replaced
by µb(γ ) of equation (51), for γ (t). The one-band case is
obtained by setting n2 = 0, n1 = 1 and λ11 = 1. The case of
two s-wave bands corresponds to �1 = �2 = 1.

Because Hc2 is determined by equations containing only
integrals over the Fermi surface, it is insensitive to fine details

of the Fermi surface shape. Therefore, one can replace actual
Fermi surfaces with ellipsoids (or with spheroids, for uniaxial
materials). Given the averages of the squared Fermi velocities
over each band, one establishes the geometry of corresponding
rotational ellipsoids (the squared ratio of semi-axes, ε). This
procedure is described in section 8.1 on the well-studied
example of MgB2.

One numerically solves equation (121) by employing any
of the available packages (such as Mathematica) able to find
roots of nonlinear equations and to do multiple integrals. The
scheme can also be applied to the case of two bands with order
parameters of different symmetries.

By design, our method is applicable for clean materials
with a moderate Hc2(0); paramagnetic limiting effects are
out of the scope of this work [8]. The method differs from
those previously employed by not involving explicit coordinate
dependent �1,2 and minimization relative to the vortex lattice
structures in calculating Hc2(T ) [2, 3, 18, 45]. The main
feature of the two-band derivation is that the linearized GL
equation (70) is assumed to hold at Hc2(T ) at any T , the ansatz
proven correct by satisfying the self-consistency equation of
the theory. The method is tested on the well-studied example
of MgB2 where it shows satisfactory agreement with data and
with other calculations.

Our main results are as follows:

1. We find that in clean one-band s-wave materials, the T

dependence of the anisotropy γ cannot be caused by
the Fermi surface anisotropy (however, the paramagnetic
limit, which is out of the scope of this paper, may suppress
γ at low T and cause γ (T ) to increase on warming).

2. For other than s-wave symmetry, γ depends on
temperature even for one-band materials. This
dependence is pronounced for open Fermi surfaces as
well as for order parameters depending on kz. Thus,
the common belief that the temperature dependence of
the anisotropy parameter is always related to multi-band
situations is incorrect.

3. Our scheme of calculating Hc2 for two-band materials
does not utilize any assumptions about the field and
temperature dependences of the order parameters �α

in two bands [2]. In fact, the gap ratio is calculated
self-consistently and in general turns out temperature
dependent. Although both �1 and �2 turn zero at Hc2(T ),
their ratio is finite and in the examples examined is larger
than at zero field.

4. The case of exclusively inter-band coupling is discussed,
which might be relevant while interpreting data on Hc2

and its anisotropy in Fe-based compounds.

5. For order parameters of the form � = �0(1 + η cos kza)

(one of the candidates suggested for pnictides), the
anisotropy parameter γ (t) depends on the sign of η (or ηs
for two bands). In particular, γ (T ) increases on warming
in a nearly linear fashion (as for pnictides) for both ηs
negative.
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Appendix A. Different form of the one-band
equation for Hc2

Both sides of equation (48) diverge logarithmically when
t → 0, so that these divergences, in fact, cancel out. However,
in numerical work this cancellation may not always be exact,
which may cause the numerical solutions to become unreliable
in this limit. Here, we provide an alternative form of this
equation free of this shortcoming.

To this end, consider an identity:

ln t =
〈
�22hcµ

∫ ∞

0
ds s ln(st) e−µhcs

2

〉

+
C + 〈ln(�2hcµ)〉

2
, (A1)

which is verified by direct integration. We now combine it
with equation (48):

C + 〈�2 ln(hcµ)〉
4hc

=
∫ ∞

0
ds s ln

tanh(st)

st
〈�2µe−µhcs

2〉.
(A2)

As t → 0, the integral on the rhs goes to zero, and we
immediately obtain the result (57) for hc(0).

Appendix B. Tc as a function of λαβ

This question had been discussed, e.g., in [38]. Since our
notation of normalized λαβ differs from that in the literature,
we provide here corresponding relations. The s-wave self-
consistency equation for H = 0,

�ν = 2πT
∑
µ,ω

NµVνµfµ(ω), (B1)

gives near Tc where fµ = �µ/h̄ω:

�ν =
∑

µ

nµN(0)V0λνµ�µ

ωD∑
ω

2πT

h̄ω
, (B2)

where V0 is to be defined. We choose it so that

1

N(0)V0
=

ωD∑
ω

2πT

h̄ω
= ln

2h̄ωD

1.76Tc
, (B3)

or, which is the same, 1.76Tc = 2h̄ωDe−1/N(0)V0 . We
then obtain a linear and homogeneous system of equations
�ν = ∑

µ nµλνµ�µ, the zero determinant of which gives
equation (66).

For other than s-wave order parameters on two bands, we
take the coupling potential in the form (84) and the order
parameters as in equation (85). We then obtain the self-
consistency equation �ν = 2πT

∑
µ,ω NµV (0)

νµ 〈�µfµ(ω)〉.
We now denote λνµ = V (0)

νµ /V0, equation (87), and recall that
fµ = �µ�µ/h̄ω near Tc. This gives �ν = ∑

µ nµλνµ�µ,
i.e. the same system of equations as above for the s-wave
case and the same zero-determinant condition (66) albeit with
renormalized couplings (87).

Appendix C. µc for the two-band case

By definition, µc,β ∝ v2
ab,β/v2

0 with v0 given in equation (47).
For vab,β we have two relations: one with the Fermi energy,
mab,βv2

ab,β = 2EF, and the other in terms of the band DOS,
equation (95):

Nβ = m2
ab,βvab,β

2π2h̄3 D(εβ), β = 1, 2. (C1)

One excludes mab,β from these two relations to obtain

v3
ab,β = 2E2

F

π2h̄3Nβ

. (C2)

Hence, we have

µc,β = v2
ab,β

v2
0

=
[
D(εβ)

nβ

]2/3

, (C3)

a clear generalization of equation (100) for the one-band
spheroid. This gives equation (110) used in the text.

Appendix D. Open Fermi surface

The theory employed above is designed to model Fermi
surfaces closed within the first Brillouin zone. Here we
consider an example of the Fermi surface which crosses the
zone boundary, i.e. it is open. Perhaps, the simplest shape to
consider is a rotational hyperboloid which is a property of the
carriers energy of the form

E(k) = h̄2

(
k2
x + k2

y

2mab

− k2
z

2mc

)
. (D1)

A schematic picture is shown in figure 10. In spherical
coordinates (k, θ, φ) we have

E(k) = h̄2k2

2mab

(
sin2 θ − mab

mc

cos2 θ

)
= h̄2k2

2mab

�2(θ),

�2 = sin2 θ − ε cos2 θ, ε = mab/mc. (D2)

It is seen from the figure that in the first quadrant of the plane
kx, kz, the Fermi surface is situated at θ > θm > tan−1 √

ε, i.e.
everywhere at the Fermi surface �2 > 0.
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Figure 10. The cross-section ky = 0 of an open Fermi hyperboloid.
kz,BZ is the zone boundary in the ĉ direction. Tilted straight lines
correspond to E = 0, whereas the thick lines show the Fermi
surface.

The angle θm corresponds to the crossing of the Fermi
hyperboloid with the zone boundary kz,BZ = 2π/c where c is
the unit cell size along the ĉ direction:

tan2 θm = ε +
mabc

2EF

2π2h̄2 = ε + α. (D3)

The parameter α = k2
F(π/2)/k2

z,BZ in most situations of
interest is less than unity (kF(π/2) is the radius of the
hyperboloid neck).

The Fermi momentum is given by

k2
F(θ) = 2mabEF

h̄2�2(θ)
. (D4)

The Fermi velocity is v(k) = ∇kE(k)kF :

vx = vab sin θ cos φ√
�2(θ)

, vy = vab sin θ sin φ√
�2(θ)

,

vz = ε
vab cos θ√

�2(θ)
, vab = √

2EF/m‖. (D5)

Further, we have for v = (v2
x + v2

y + v2
z )

1/2:

v = vab

√
sin2 θ + ε2 cos2 θ

sin2 θ − ε cos2 θ
= vab

√
�1(θ)

�2(θ)
. (D6)

The DOS N(0) is defined by the integral of equation (94),
which can be written as an integral over the solid angle
d� = sin θ dθ dφ:

N(0) = m2
abvab

2π2h̄3

∫
d�

4π
√

�2(θ)�1(θ)
, (D7)
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Figure 11. The upper panel: hc(t) for Fermi hyperboloid with
ε = α = 0.1. The lower panel: the anisotropy γ (t) for the same
parameters of the Fermi hyperboloid.

where the integration over θ is extended from θm to π − θm.
The Fermi surface average of a function A(θ, φ) is

〈A〉 = 1

D

∫
d� A(θ, φ)

4π
√

�2(θ)�1(θ)
, (D8)

D =
∫

d�

4π
√

�2(θ, ε)�1(θ, ε)
. (D9)

For A depending only on θ , one can employ u = cos θ :

〈A〉 = 1

D(ε)

∫ um

0

du A(u)√
�2(u, ε)�1(u, ε)

, (D10)

�2 = 1 − (ε + 1)u2, �1 = 1 + (ε2 − 1)u2, (D11)

where the upper limit is um = cos θm = 1/
√

1 + ε + α. In
particular, one obtains

D(ε, α) = F(tan−1 √
(1 + ε)/α, 1 − ε)√

1 + ε
(D12)

where F is an incomplete elliptic integral of the first kind.
As for ellipsoids, the relation between vab and v0 defined

in equation (47) for a one-band situation holds

v3
ab = D v3

0, (D13)

however, with a different D.
For H ‖ ĉ, the relevant electron orbits are circular, as

for spheres and rotational ellipsoids, and we do not expect
qualitative deviations from the latter. Figure 11 shows hc(t)

calculated with the help of equations (48) and (49) for both
s- and d-wave order parameters.
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Numerical evaluation of the anisotropy shows that γ (t)

decreases on warming, figure 11. Reduction of the anisotropy
on warming is substantial for a single band open Fermi surface,
an interesting observation given the common belief that the
temperature dependence of anisotropy is a multi-band property.
We also note that this reduction is stronger than that of open
Fermi surfaces.

References

[1] Helfand E and Werthamer N R 1966 Phys. Rev. 147 288
Another part of this work, published as a separate paper by

Werthamer N R, Helfand E and Hohenberg P C 1966 Phys.
Rev. 147 295 (WHH), is devoted to spin paramagnetism and
spin–orbit effects. Dealing with orbital effects we refer to
HW, although quite often WHH is cited when the intention
is to mention the seminal HW calculation of the orbital
Hc2(T ).
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